Game Design
 Unity3D Lesson 3: 3D Animation Pipeline Demonstration
EXERCISE SUMMARY: Given a 3D animated “Meeple” exported as an FBX mesh and PNG texture, import into Unity. Make Meeple playable with a Mecanim State Machine.
IMPORT ANIMATED 3D CHARACTER INTO UNITY:

a) Import files into Unity:
1. Launch Unity and Create a new Project. Drag the Meeple.FBX and chosen texture PNG file into the Project window to add them.

2. Select the FBX in the Project and in the Inspector choose the top “Model” tab. If texture was not automatically applied to the FBX, scroll down the Inspector and drag the PNG texture onto the available slot.

3. Still in Inspector, open the Animations tab. Under “Clips” hit the [+] button three times. Name the three new clips Idle, Walk, and Animation. Set their ranges to match the frames in the Maya file:

Idle: 10-40, Walk: 50-70, Jump: 80-100

4. With Idle and Walk selected turn on Loop Time.

5. Scroll down to hit [Apply]. The clips are added to Meeple FBX in the Project.
b) Build Scene:

1. Add Ground: GameObject > 3D Object > Cube. Inspector: scale = 7/ 0.3/ 8.

2. Add Meeple to Hierarchy/Scene, locate at the origin.

3. Add Light: GameObject > Light > Directional. Inspector: Shadow Type = Hard.

4. Rotate light and camera to face the Meeple.

5. Add an Empty GameObject, locate at origin, parent Meeple underneath.

6. Select Empty G.O. in Hierarchy, add Components: Physics > Rigidbody (Constraints/Freeze Rotations) and Physics > Box Collider (0.1/ 0.1/ 0.1).
c) Build State Machine:

1. Create Animator Controller: RightClick in Project, Create > New Animation Controller. Drop on Meeple in Hierarchy.
2. DoubleClick New Animator Controller in Project to open the State Machine.

3. Drag in Animation Clips to add, set Idle = default (orange, rightClick to set).

4. Add Transitions: RightClick a Clip in State Machine, choose “Make Transition,” click on target clip (4: Idle->Walk->Idle, Any State->Jump->Idle).

5. Add Parameters: Hit [+] twice: Bool called “walk” and Trigger called “jump”.

6. Select each transition and set Conditions in Inspector:

a. Any State -> Jump = jump

b. Idle -> Walk = walk, true

c. Walk -> Idle = walk, false
And turn off "Has Exit Time" for each transition so animation starts right away!
d) Add Player Script to Empty G.O. (Meeple’s Parent):
1. RightClick Project to Create/C# Script, name Player, add to Empty G.O.

2. Open script, create reference to Animator & statements to activate conditions:
Player.CS
C# script for WASD movement and Spacebar jumping:
using UnityEngine;

using System.Collections;

public class Player : MonoBehaviour {

float speed = .25f;

Animator anim;

Rigidbody rigidbody;

float JumpSpeed = 25f;

void Start(){

anim = gameObject.GetComponentInChildren<Animator>();

rigidbody =gameObject.GetComponent<Rigidbody>();

}

void FixedUpdate(){

if (Input.GetKey ("w")) {

rigidbody.velocity += transform.forward * speed;

anim.SetBool ("walk", true);

} else if (Input.GetKey ("s")) {

rigidbody.velocity += transform.forward * -1 * speed;

anim.SetBool ("walk", true);

} else if (Input.GetKey ("a")) {

rigidbody.velocity += transform.right * -1 * speed;

anim.SetBool ("walk", true);

} else if (Input.GetKey ("d")) {

rigidbody.velocity += transform.right * speed;

anim.SetBool ("walk", true);

} else if (Input.GetKey("space")){

anim.SetTrigger("jump");

rigidbody.AddForce (Vector3.up * JumpSpeed);

} else {

anim.SetBool ("walk", false);

rigidbody.velocity = new Vector3(0,rigidbody.velocity.y,0);

}}}
e) Save and Play! [W] [A] [S] [D] to move, [Space] to jump.
NOTE 1: If the animation does not play, be sure you dragged the Animation Controller from the Project onto the mesh in the Hierarchy (under the Empty G.O.)!
NOTE 2: Rather than hard-coding motion to specific keys like this, consider using the AXIS inputs so that motion can use the keys or other controllers. To see the input options go to edit/Project Settings/Inputs
Input.GetAxis("Horizontal") > 0
// right

Input.GetAxis("Horizontal") < 0
// left

Input.GetAxis("Vertical") > 0

// forward

Input.GetAxis("Vertical") < 0

// backward
1

