2D Sidescroller Level Design 

By Ken Bowen 
(game designer on Iron Man 2 DS, X-Men Origins: Wolverine, and Madagascar: Operation Penguin). Adapted from: http://thegame-pad.com/sidescroller-level-design/
Creating a fun, well balanced level takes an immense amount of effort and multiple aspects of game design need to be in place before a single level is created. I won’t go over all the planning (for instance, how to create a Game Design Document or an enemy flow chart). Instead, this article is all the information that goes directly into a single level. That way we can take all that information and create a compelling level from start to finish.

For simplicities sake, we’re going to assume that we are creating a side-scrolling action/platforming/puzzler game.

PART 1: Elements of Level Design

Defining Gameplay Components: Every game is different, but most games should have at least 2-3 different aspects of gameplay. For instance in a sidescrolling game like Iron Man 2 DS we had Combat, Puzzles, and Platforming. We will use these icons:
[image: image1.png]& W =




Typically a lead designer provides what elements are going to be in a game but if you are working alone, defining these gameplay elements is a crucial step before designing a level. Each component has specific requirements that make these sections unique and sometimes these are engine requirements.

Some considerations for different components include interactive objects, moving platforms, the size of a room, and what kind of graphical fidelity you can have in the background. High poly backgrounds that have multiple shaders might be good for platforming areas, but if you combine a combat scenario in the same space there could be significant performance issues.
For instance in X-Men Origins: Wolverine, I had to plan ahead to create combat rooms that had adequate doors in the background so I could spawn enemies from behind. If I had put all of my combat encounters inside cavernous rooms, it would have changed my flexibility for spawning-in enemies. 

[1] Gameplay Component: Combat Arenas

Here is an example of a basic Gameplay ruleset to create this type of combat level:
a) Required Elements: All 2D combat arenas need small areas to take advantage of player wall-jump abilities and limit the AI playspace. Each room should have some sort of obstacle that requires a platforming maneuver (ducking, jumping, hiding from enemy weapons, etc…)

b) Optional (preferred) Elements: Each room should have multiple entrances somewhere on the back wall. Adding multiple breakable objects will also lead to more visceral gameplay. Optional elements include hazards like dangerous fans, grates that occasionally spit fire, etc.

c) Barred Elements: Combat Arenas are processor-intensive scenarios. Effort should go to limiting the amount of non-gameplay related artwork, lighting, and processor-intensive visual effects. Arenas cannot have large foreground obstructions, complex platforming that would stop the enemy AI from maneuvering properly, or physics-based hazards.

[2] Define your Building Blocks: Every device and game has a different feel to it and making a game that feels well designed starts long before you begin designing levels. There are a lot of essential information that includes, but is not limited to:
· What is the camera’s viewable area on specific devices / resolutions?

· How tall and thick is the character? How high are they when they crouch?
· How tall is a doorway?

· How high is a single floor of a building compared to the player character?

· How far can a character jump? How high can a character jump?

· What are different attack radii for melee attacks?

· What is the damage that weapons can do at specific distances?

· How wide is the max/min/comfortable size of two walls for a wall jump?
[image: image2.png]viewable screen size

1173

ﬂ 6 Unlts
D ht
(distance) HRH

ump Height Double Jump
Jump (easy) Height

Jump (medium)

ump




Not only should you determine what all these elements are but you should also create prefabs/static meshes that allow you to create a level quickly. To start this process grab any grid-based software or paper. I typically use Adobe Illustrator because of the handy grid and snapping features.

For gameplay purposes, I typically create a series of playroom “Whiteboxes” to help me test out different components and figure out how the mechanics of a character integrate into the world. These Whiteboxes should iterate every variable possible so that you can create the appropriate measurements in your written documentation. For instance if you have a gun that can shoot through different materials, you should create a target range with all the available materials and thicknesses as an example.

For platforming in an editor like Unreal, you should create a series of gaps in the floor that start small and scale linearly. You should also label these in-game with accurate measurements, for instance an 8 unit jump should be marked with a sign or perhaps a collider that pops up a message to the console. From there, you can figure out ideal jump lengths and also what jump lengths to avoid. Creating these playroom Whiteboxes makes your job a million times easier later on (unless you change an aspect of a gameplay mechanic midway through development, then it can be disastrous).

Now that you’ve gotten these basic gameplay Whiteboxes you need the character measurement from your art team. Some studios have a standard height for their character (in a real unit of measure such as cm, or feet). For this example, we are going to assume that our character is six “units” of height in Illustrator which correlates to 6 feet in Maya. Draw a small figure that helps represent basic world scale.

The next step is to create your building blocks based on your character mechanics that you tested out in your playrooms. You want to do this on paper/Illustrator instead of creating them in the editor because inevitably someone is going to want a document based on your work. Working on paper is faster, but you can create extra layers in a tool like Illustrator. That gives you the power to place notes on enemy placement, notes for your producer, or any number of things.

I typically take as many mechanics as I can and create an easy, medium, hard, and hardest building block out of them. NOTE: Make sure grid snapping is on. If you are using Adobe Illustrator, Once you are done with your gameplay prefabs create “symbols,” so they are easy to duplicate. You might also take the time to create symbols of all of your enemy characters, inter-actable objects, etc…

From here, you have all of your game building blocks to create level sketches quickly and without a lot of bug fixing/rework. Take these sketches and create an in-engine version of them. You want to double check that your sketches match the mechanics you’ve created.

[3] Gameplay Flow (AKA Rhythm AKA Difficulty Curve)

Utilizing all your gameplay components and rotating them in and out reduces player fatigue. Player fatigue is when players get frustrated or bored with one type of gameplay (for instance combat) and are more likely to put down the controller and turn off the game. This happens in nearly every game to a certain extent, but it is avoidable if you have robust sets of gameplay components. You want to keep the gameplay varied and stimulating throughout the game. While this sounds obvious, I am sure you’ve played a game where this has happened to you.
[image: image3.png]Level 1
Boss
B Golden Path /‘I;I'/ \ /_._Exitto level 2
N i/#\i 3y
15T o 1
g %
I I Y S A




For instance in Iron Man 2 we had several different gameplay components: A) Combat, B) Puzzles, and C) side scrolling shmup-esque gameplay. Based on the composition of the enemies involved, Combat could be further broken down into: 1) boss (challenge) battles, 2) land combat, and 3) air combat. We would constantly rotate in new components and challenges to insure the player was doing something different. Then in later levels we’d throw them a curve ball by playing with gravity or the camera.

Flow can be separated into two types: Macro and Micro. Microflow refers to one section/level of a game. Now some open world games might make this a bit difficult to define but even those typically have a ramping difficulty that starts with dumb skeletons that you can hack to pieces to higher-level enemies that might require more knowledge of gameplay mechanics to defeat, like the Brutes in Halo.

Within one level this Flow is important but you also want to build upon the difficulty of these components. Macroflow allows designers to create more complex levels later on that can continue to be challenging as the player understands easier mechanics. Typically a lead designer is in charge of creating a difficulty ramp that entry level designers then implement. This difficulty curve is based on the introduction of new gameplay and builds from previous levels. For instance:

	Skill
	Level 1
	Level 2
	Level 3
	Level 4

	Jump
	Jump small gaps
	Jump medium size gaps
	jump large gaps
	jump the maximum distance

	Jump+Moving
	Jump while at a walk on stationary platforms
	jump on slow moving platforms
	jump on quick moving platforms above pits of death
	multiple jumps on platforms that move up/down and circular


Macroflow design needs to take a lot of different scenarios into account. You want to limit which techniques the level uses based on its overall position in a series of levels. Is it the last level? Is it the first? At the beginning of the game, you need to introduce each component one at a time in a semi-safe environment.

Creating an entertaining and engaging flow is hard to master. You must take into account the current skill level of the player, the golden path gameplay objectives, and the overall skill level of the audience. Furthermore, you’re only going to get a rough approximation of your games difficulty until you start running usability studies.

Sometimes things can be devilishly hard on purpose, but other times your gameplay is going to be affected by little things. For instance in early builds players had a lot of trouble using the belly slide in Madagascar: Operation Penguin. We ended up introducing the mechanic sooner, and we made sure to continue using it throughout the game and created a specific visual feel to indicate where belly sliding was required. A lot of this is designer instinct, developed with lots of practice.

[4] Creating Teachable Moments

Every mechanic has a specific learning pattern that you should adopt. A talented designer can teach players about mechanics without them knowing they were taught.

Step 1: Show how the mechanic works without any interfering systems in a safe environment. Players should not be able to bypass this step with other mechanics. For example: Double-Jumping: To teach the player double-jumping we need a platform that blocks the player from continuing until they double-jump up on it. If you have a mechanic like wall-running, you must take that into account to create a custom scenario that makes wall running useless (ideally without disabling it for no reason).

Take Half Life 2, for example. The player comes across a crow that flies into a Barnacle Tongue (enemies that hang from ceilings). The crow gets eaten, and the player learns “Those things hanging from the ceiling will grab things that touch its tongue”. This is an intentional learning moment.

Step 2: Introduce the mechanic with a small difficulty ramp but still in a safe environment. Using our Double-Jump example, consider a series of 4 platforms that all require double-jump but the 4th one requires near-perfect timing while the 1st one is easy. Not only does this reinforce mechanic practice but it also shows a few different ways that the mechanic is useful to the player and in what scenarios they might see it.

Step 3: Have the player use the mechanic in a stressful or timed environment. For instance, perhaps a gorilla is hurling flaming barrels at the player down a hallway. The player must double-jump (or get hit) in order to get past the barrels. This step is the first true implementation of the mechanic into the gameplay.

NOTE: Teaching mechanics don’t all have to come at the beginning of a level in the form of a heavy-handed tutorial. You should be constantly implementing new skills to master throughout the game and as the player is mastering one skill they might begin learning a new one.

[5] Defining context: The player has multiple different skills and techniques available to them but providing contextual visuals can make it much easier for a player to make a decision on what they should do or could do in a situation. As you create your building blocks, put some thought into how your art team is going to represent them in the game. If possible, you want to create a visual vocabulary that allows you to express specific techniques or skills a player is expected to use in any given situation.

For instance, many sidescrollers have a “Leap of Faith” in order to provide the player a sense of vertigo or simply get down from a high place if the designer couldn’t get them down any other way. You can indicate where these Leaps of Faith are and where it is safe to make them through consistent visual imagery. Assassins Creed does this with small wooden posts that always have birds sitting on them and a hay bail at the bottom. When a player is running away from enemies and needs to find a safe way off the rooftops while running full speed, these areas allow a player to make a snap decision without plummeting to their death (most of the time). They also did this with white cloth over boxes at ground level to indicate places where a player could climb to the rooftops.
[image: image4.png]Leap of Faith

_~ Small lip
requires jump

Arched Ge-
ometry






Some ways to create context are:
· Using specific color while being conscious that some people may be color blind. Many games use lighting to help direct the player to the next room or obfuscate secret rooms that players only find by exploring.

· Using a mechanic specific object like putting a cracked texture on a wall to indicate that it is breakable. This texture could be on wood, brick, or steel walls, and it would still communicate the function of that wall. Similar to hay bales.

· Lighting conveys a great deal of information and is extremely useful in explaining to the player where they should go. If you’ve ever played modern sidescrollers, designers often hide collectables or special powerups down dark hallways, which is also a use of lighting.

· Play sound effects or mute the music that indicate specific context. Horror games have this down exceptionally well. If you plan on including a sound effect that is mechanically significant *please* insure that your closed captioning system properly represents these sound effects. Some people are deaf or they simply don’t play with the sound on.

[6] Develop Visual Variety
In some companies, the level designer is also an environment artist while other companies a level designer simply creates Whiteboxes and places pre-created assets into a scene. Although you might not be the person that creates the art in the scene, a level designer is still responsible for creating the basic architecture of each area.

As the level designer, your job is to create memorable terrain out of very repeated 3D assets. A lot of this can be done by planning ahead to create visual components that work well together and can be reused multiple times in different ways. The same way a player gets gameplay fatigue they also get visual fatigue when playing monotonous environments. Elder Scrolls: Oblivion was often an example of too much of the same visual thing.
	You can create many different engrossing environments by varying visual components to provide a more dynamic experience. You can attain these effects in several different ways:

· The depth of a room behind the player. In a sidescroller example, you could have a cavernous warehouse that you can see far into the distance OR you could be against a wall. In both situations, the player has the same gameplay space, but you’ve created a different feel.

· Varying indoor/outdoor areas. Are your players moving through a warehouse building? Perhaps they take a detour over the roof or along a catwalk on the outside or perhaps a massive tank shell destroyed part of a wall, and you can see out into the distance.

· Lighting rooms in contrast to each other as well as having different times of day.

· Create claustrophobic or “voyeuristic” areas by utilizing planned foreground elements with tighter level geometry.

· Create verticality (the sense of moving upward or downward). Sidescrollers do a lot of side-to-side motion but often completely forget going up and down.


	[image: image5.png]



[image: image6.png]



[image: image7.png]Brains!







Now that you have all these pieces it is time to assemble a level!
PART 2: Actually creating your levels. A step by step process

Throughout the game development process playtesting your work is extremely beneficial. I expect any good developer to play their own work, but frequently the designer is the worst judge of the difficulty of their levels. It is critically important that they have others play their levels through every step of the following process. This allows the designer to iterate productively. 
[a] Planning:

I like to write down all of the level requirements based on the Gameplay Flow down into their own document while I plan out the level. This includes available AI, game mechanics, and assets, but typically a lead designer gives a lot of power over a level to the Level Designer in charge. In this case, I also take the time to plan out:
· “Look and Feel”: What kind of feelings does my level evoke from the player. Are they scared? Is this level supposed to feel abandoned or under attack? Is it falling apart or is it a new construction? All of this informs the rest of your work. For instance if there is no power all the doors don’t work so you might need the player to smash their way through doorways, or reroute the limited power.

· Story: Story in games can be separated into two types: dialogue and environmental storytelling. The first is the basic verbal back-and-forth between characters. It is necessary to take a look at the script and copy in any big moments of exposition and plan for them. If you do it right, you can work some genuinely interesting cinematic scenes into your level. For environmental storytelling you manage your look and feel: if your level is an abandoned army base because it was invaded by aliens you can create deep implied stories with the degree of ruins, the objects left behind, graffiti, etc. Perhaps there are tools strewn all over the hangar bay or the player comes across the skeletons of an unlucky group that tried to barricade themselves in a room. All these elements create a rich sense of history in a place.

· Key Locations: Sometimes these key locations are mandated through your story but sometimes you can create them based on your own intuition. Typically these key locations are going to take some large custom assets or technical feat, so it is necessary to plan in advance for them. For instance in Half Life 2, the player comes across a vista right before they enter a cave. On that Vista, they get their first good look at District 17 and the combine tower. This is an extremely pivotal scene, and it conveys a lot of information to the player.

· Wow Moments: These are when the player simply says “Wow” or has a visceral reaction to a scene. This could be a final kill animation, a large jump, or an enemy crashing through the rear wall. It is when a player is surprised, scared, awed, or affected by the game in a way that they weren’t expecting. Wow moments are like key locations but are generally more about scripted sequences. For instance in Call of Duty, the player is in a trench when two tanks roar overhead. The first time I played that it took my breath away. Those moments need a lot of planning and typically a lot of unique assets to pull off, so planning for them early is essential.

[b] The Sketch
Remember all those gameplay building blocks we created? Now it is time to use them. In a 2D art package, sketch out your level. Like every good story, a level needs a beginning, middle, and end. This is also the point where you determine all of your gameplay objectives that keep the player moving throughout the game, hidden collectables, etc… Good objectives need some specific information.
· The objectives from a mechanical point of view. Kill 5 of x in rooms A/B/C

· How the objective is communicated to the player. How does the text read to a player? Are there any icons or arrows on the screen?

[image: image8.png]Combat Room

Collectable






This is also a good time to sketch out The Golden Path. Golden Path is a term for the shortest distance between the beginning and end of the level while completing all objectives so the player can move to the next level. If you want the player to backtrack a lot, for instance in a Metroid style game, then you can quickly ensure that the player actually does a lot of back and forth. Shadow Complex has an impressive sketch that started on paper.

[c] The Asset List
This is probably the most tedious part of any game development process, but asset lists are critical to coordinate teamwork and they make solo game development much more efficient. Your list likely includes:
· Sound Effects

· Visual Effects

· Textures

· Models

· Special Code like custom AI behaviors

· Music

[d] Whitebox: Now that you’ve created all of your sketches and documentation you’re ready to implement your level with basic collision. As quickly as you can, slap down all of your terrain with a basic texture on it. Almost none of this “zero draft” work will end up in the final game but, this allows you to run around your level and make sure the in-game feel is what you want. 
It also lets you test out any gameplay issues you might have. For instance, you might have made some platforms too far away from each other based on the in-game camera. Working these problems out early is much better than redoing artwork and scripting later. It’s also important for you to block-out what kind of environments you are planning. Is this is an inside or outside area, how much depth a scene has, and what kind of visual effects you are going for, etc..

[e] Lighting Pass: Now that you’ve got your basic art assets in the time comes to light your scene. Most designers forget this step and get confused about why their scenes don’t look as dramatic as they could. When focusing on lighting you need to keep in mind where the light is coming from, what is casting a shadow on what, and where your enemies are going to be. Unless it is your intent to make it impossible to see the baddies coming at you, lighting your rooms poorly could result in unacceptable gameplay.
One terrific game that takes advantage of lighting is Deus Ex: Human Revolution. When you play through, notice how certain side hallways or secondary paths have lights, or enemies tend to patrol only where the majority of lights are.

Another important issue about lighting is that guiding the player to vital areas like buttons or the next room. This lets you stealthily guide the player forward without being heavy handed like the old Golden Axe games with a blaring arrow.

[f] Scripting: Now that you’ve created all your rooms you’ve got to get all of your level elements working. This includes getting all of the moving platforms moving, ladders with their appropriate climb volumes, and begin blocking in enemies so that they spawn in the correct rooms. If you don’t do this now, you might not discover critical bugs like enemy pathfinding around specific objects or that your moving platforms need to be tweaked. After this step, you should have a fully functional level that anyone can play from beginning to end.
[g] Testing: Ideally you level is now ready to be played by the rest of your team. Now is the time to do a thorough review of your gameplay and get any feedback based on level design and usability tests.

[h] Art implementation: Eventually artists are going to give you lots of intriguing art assets to play with, but they typically have limited budget for re-doing their work. That is why we wait until there are levels ready to test the art before implemented any art assets. Artists should provide very rough placeholder assets to test all proportions, and then create final detail.

Once you have final assets, you should implement textures and critical objects into the scene to ensure that nothing looks “placeholder”.
A good tip to making entertaining areas is to create “outside” areas within a level that the player can see but not touch. For instance, a bathroom with a door haphazardly bolted onto the frame gives players a tantalizing view of a horde of zombies inside but thankfully not dangerously in reach.

[i] Cinematics: Many games have some sort of scripted events that don’t directly affect the player’s gameplay experience. Sometimes these are rendered “cut-scenes” between levels , animated in Flash or Maya, or perhaps displayed in a comic strip or motion graphics form. 
“In-game” cinematics which interrupt gameplay inside of a level are exceedingly common. This might include a hulking plane flying overhead, a cut to see the result of pulling a lever, or a battle between two AI opponents duking it out in the background. These cinematic moments can make your level come alive, but be careful about wresting control from the player too often.
In Iron Man 2, we took advantage of an exceptionally basic camera system. Not only did we do full-fledged in-game cutscenes but we also used the camera in more subtle ways. For instance, when the player is flying the camera will zoom out and lead the player more than if they were standing still. When Idling, the camera would zoom in tight onto the player.

[j] Polish: You thought there wasn’t anything left to do? Well it is time to tighten those graphics. You’ve got a lot of the big effects in, but there are a lot of small things that can add depth to the scene. This often takes form as visual and sound effects. For instance creating little willowisps that float in a dark area, or a chain that rattles as water splashes down it (think Alien). These little touches are hardly noticeable most of the time, but create a much stronger atmospheric experience.

In Wolverine, one of the levels was held in a Mutant prison. We added small particle effects like fluttering pieces of paper, sparks, and smoke to create a more dynamic, haphazard environment.

CONCLUSION: Well there you have it, you now have one fully created level. There is a good reason why games take so long to develop; developing the level-by level experience in a AAA style title can take hundreds of developers working on it for years. The more levels your create, the faster it will get, but you will also realize how much more there is to learn about crafting an engaging player experience.
1

