Rational Game Design
Notes by Jason Wiser, from Ubisoft / Alexis Jolis Desautels workshop April 2016
NOTE 1: Ubisoft gives this content to their teams in an intensive 9-day workshop. The version I attended was 2 days (16 hours). I am delivering this to you in 2 hours, so this is necessarily a pared down discussion, Read the Gamasutra article for more!

NOTE 2: This talk will ruin the fantasy of games for you, at least for a little while.

The Problem: Why care about this? It solves the biggest problem in level design!: How to create a progression of levels with a rising arc of difficulty that the player can manage. Many games, particularly large scale projects with many designers, have broken difficulty curves. Players are thrown into scenarios which are far beyond the skills they can be reasonably expected to have developed so far, get frustrated, and quit. Or they encounter many levels that are too easy, given the skills they have so far developed. Low Player Attachment: Instead of long engagement and positive reports, players stop playing and do not recommend the game to their friends, hurting sales.
SUMMARY: RGD is a way to solve the problem of inconsistent /broken difficulty curves. It sees games in a stripped-down way: as a series of mechanics, achieved through specific player input, to build skills. The analysis of mechanics and inputs provides a list of specific "Atomic" Parameters which can be tested in different combinations. These varied combinations are the "Patterns" on which levels are then built.
A quick example: An FPS enemy that can run side to side or straight at the player.
TAKEAWAYS: The participant in this workshop should be able to:
1. Identify Core Mechanics of gameplay (what player does conceptually) and break a mechanic down to its Atomic Parameters based on Skills and Inputs (what a player does physically).
2. Build a Difficulty Matrix (table/chart) for a Mechanic’s Atomic Parameters, and design Level Scenarios based on their variation.

3. Be able to design Patterns (level scenarios) based on variations on Ingredient (enemy or obstacle) parameters. The order of these patterns will imply story
· RGD was created at Ubisoft (and RLD at Naughty Dog) to manage and improve gameplay depth (difficulty curves) and player attachment to games.

· RGD is a system for managing the difficulty and pacing of your game

· The RGD Table (Difficulty Matrix) describes the easy, medium, and hard cases for each parameter in a mechanic.

AVATAR EXAMPLE: Consider a failure case: the first encounter in the Avatar game (based on Cameron Movie), where alien dogs attack before the player even know how to target and shoot. The dogs jump in from every direction, moving everywhere, offering no opportunity to learn the mechanics of the game before tossing the player in too deep.
QUESTION: Given the same enemy, how can the space be designed for an easier encounter? CONSIDER: What makes this scenario too hard? How fast the dogs move, how fast they attack, where they start (appear) where they can go (flank).
SOLUTION: Even running the creatures through a narrow space to limit their mobility would have made a big difference in the player's ability to deal with the challenge.

A big failure of designers is to try and create variety by always ADDING new/more stuff. This spreads the player thin learning completely new mechanics, never delving deeply. Deep game and level design is when the player can explore a few mechanics in great variation, by SUBTRACTING features. If you have a mechanic with 5 features, what happens when you turn off 4 at the start, and progress to all 5? Occasionally turn off some given the scenario, to focus on a deeper understanding of the others!
Consider a mechanic: Aim-and-Shoot: In the final game this could be a first person shooter, high-intensity alien bloodfest (the "Form"), but if we just look at the bare mechanic and inputs (the "Function"), in actuality it is the skill of matching the position of two points (aiming) and validating (pulling the trigger and seeing the target react). The parameters which can be adjusted for less or greater difficulty include (a) the size of the target shape on screen, (b) movement speed, (c) predictability, (d) Window of opportunity (WoO), etc. Note the actual enemy size is irrelevant-- it could be a 12-inch scuttling monster running near your feet or a full 6-foot tall human sniper standing in a window in the distance, but if both are 10% of the screen they are effectively the same thing in terms of size on screen.

Skills are either Physical (timing, reflexes, measurement, precision, endurance, etc), Mental (concentration, choice, observation, management, strategy, tactical, cleverness, etc), or Social (persuasion, leadership, etc). RGD Mental is harder to quantify in terms of providing concrete progression of difficulty (as player choice gets difficult, for example, players typically just flip a coin), and RGD Social challenges are enormously hard (why provide difficulty restrictions for gaming when gamers naturally have so many social impediments already?-- some games do, limiting who can speak, etc).

Remember to always distinguish between Function and Form:

Function = player skills, inputs, atomic parameters.
Form = aesthetics/story

What are Functions in G-d of War (endurance + dexterity) & Assassins Creed (timing)?

The Deliverables for this process: Identify:

[1] Goal of Gameplay, [2] Mechanic, [3] Needed Skills, [4] Inputs (informs a LOT of design decisions), [5] Atomic Parameters (list them, provide easy, medium, hard, and "no case" examples), [6] Level Design (LD) Patterns (overall easy, medium, and hard patterns based on parameter combinations, ideally with drawn diagrams, which can then be creatively interpreted as story-rich level scenarios)

Level Design Patterns:

* Concrete LD situation extracted from atomic parameters

* Allows us to create difficulty with limited # of well-conceived ingredients (enemies).

* Create LD Patterns (variations) for each mechanic-- their combination is the level!
ATOMIC PARAMETERS MUST be quantifiable (easy, medium, hard, no case) and validated through playtesting!

If you know your parameters, you know what your changes will do to your game, and, especially, you can keep all elements within your desired boundary of difficulty.

TIPS FOR PARAMETER SELECTION:

Set parameters to FOCUS your game. Remove those you don't want to challenge. Set as constant those you don;t want to evolve

1. Eliminate minor atomic parameters

2. Think Skills and Inputs

3. Isolate Atomic Parameters for each Mechanic to manage their difficulty (no-case, easy, medium, hard)
EXAMPLE #1: Gameplay= Driving, Mechanic = Steering, Ingredients = Obstacles
SKILLS ATOMIC PARAMETERS

Precision Angle of Tolerance

Timing Anticipation Time

 Window of Opportunity (WoO)

 Obstacle Predictability

EXAMPLE #2: Nintendo Archery:

First they test PRECISION: hit the goal. Then they add wind/ swinging objects in the way, which tests TIMING. Then they vary the timing, size, and rate of objects. Nintendo does an excellent job of building up the difficulty of one skill and then the next with progressing difficulty-- this is the core of RGD.

EXAMPLE #3: 3rd person shooter, like Gears of War

Gameplay: Combat ("Kill or be killed"). Mechanic: Point and Shoot (Line up two Xs and validate). Ingredients: Enemy NPCs, explosive objects. Skills: precision to coincide the Xs and timing to do it at the right time.
EXAMPLE #4: Stealth mechanic (like in Splinter Cell):

[1] Goal of Gameplay: Reach destination without being detected

[2] Mechanic: Move character and/or camera

[3] Skills: Timing, Precision, Measurement (not Observation-- mental!)

[4] Inputs: Move the joysticks with your thumbs

[5] Atomic Parameters: | No Case | Easy | Medium | Hard |

PRECISION:

· Analogue (Joystick) Angle of Tolerance (direction): | loose angles | med | exact |

TIMING:

· WoO: | long | medium | short |

· Predictability: | camera | guard, repeating pttrn | long/intricate pttrn/ no pattern |

· Anticipation Time | far away | medium | very close/sudden |

· Input Change Frequency | no change | 1 input/sec | 3 inp/sec | 5 inp/sec |
MEASUREMENT (stick massaging):

· Analogue Zone Size (physical zone of tolerance) |80%|40%|10%|

· Analogue Zone Placement (where the joystick needs to go in its range) |0 or 100% (ends)|50% (middle)|25 or 75%|

[6] LD Patterns: Variations of the above!
Inputs and Parameter Notes:

· Measurement on a keyboard = timing

· A hard WoO (window of opportunity) means only occasionally available to hit-- cover or moving/rotating shielding elements.

· Anticipation Time in a rhythm game starts Physical, but as the game gets harder and the player more skilled, they learn the song and offload the work to the Mental

· Button mashing: frequency of input and duration of input (g-d of war)

And Now The Fun: Examining Ingredients (enemies/obstacles) as just a set of characteristics, and then considering the Atomic Parameters that would allow us to get varied Patterns (gameplay scenarios) out of each Ingredient:

INGREDIENT-TO-LEVEL EXAMPLE:
Consider this Character, where all Atomic Parameters are set to easy by default:
[Ingredient characteristics]:
Size = big (easy)
Speed = slow (easy)
Predictability = very (easy)

WoO = always (easy)
Hit Points = low (easy)

What is it? (lots of possibilities):
NOW, create level scenarios for these Variation scenarios:

[Ingredient Characteristics]
[Atomic Parameters]
 scenario1
scenario2

Size
=
big

Size on Screen:

medium
hard

Delta Position on Screen:
centered
offscreen
Speed =
slow

Speed on Screen:

easy

hard
Predictability = very
Predictability:

easy

hard
WoO
=
always
WoO:

hard

easy
Hit Points = low

Shooting Duration:

short

long
So, an enemy with the characteristics on the left can be used in multiple levels with various combinations from the right!

FIXING A GAME WITH RGD: In addition to building a game (sequence of levels) using this system, you can also FIX a game. If you have to cut level #6, levels 5 and 7 are screwed (in terms of difficulty curve) unless you can go back to the matrix of mechanic parameters and tweak them together to fill the gap!

LEVEL DESIGN: RLD (Rational Level Design) makes RGD concrete: RLD is spreading the RGD across time/levels with a progression of learning: Tease, Learn (in a safe environment), Practice (with increasing challenge), Master (final test). This is the access cycle for each mechanic. Once learned, the mechanics can be combined.
SUMMARY: Don’t Create Lots of New Monsters, Create Variations of Access:
Again, the big idea here is to avoid adding brand new mechanics, but instead allow a player to learn a few core mechanics more deeply through variation. In other words, when doing level designs, instead of constantly adding new Monsters, design levels that allow the same monsters to be presented in scenarios where they function differently, by limiting what they can do. Change the level to change the monsters, rather than add new monsters.

1

